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354 Chapter 13. Graphs and Traversals

Connectivity information is present in a multitude of different applications, in-

cluding social networks, road networks, computer games and puzzles, and com-

puter networks. In computer networks, for instance, computers are connected to-

gether using routers, switches, and (wired or radio) communication links. Infor-

mation flows in the form of individual packets, from one computer to another, by

tracing out paths that hop through intermediate connections. Alternatively, in com-

puter puzzle and game applications, game positions are connected by the transitions

that are allowed between them. In either case, however, we might be interested in

paths that can be mapped out in the connectivity structures that are represented in

these applications. For instance, a path in a puzzle application could be a solution

that starts from an initial game position and leads to a goal position.

In some applications, we might not really care whether we find a shortest path

from a source to a destination, whereas in others we might be interested in finding

the shortest paths possible. For example, in interactive applications, such as in

online games or video chat sessions, we would naturally want packets to flow in

our computer network along shortest paths, since we want to minimize any delays

that occur between one person’s action and the reaction of communicating partner.

In other applications, such as in solving a maze puzzle, there may be only a single

path between a source and destination, with several dead ends that need to be ruled

out in order find this path. Thus, we would like to design algorithms that can

efficiently identify paths in connectivity structures.

In addition to these motivating applications, connectivity information can be

defined by all kinds of relationships that exist between pairs of objects. Additional

examples include mapping (in geographic information systems), transportation (in

road and flight networks), and electrical engineering (in circuits). The topic we

study in this chapter—graphs—is therefore focused on representations and algo-

rithms for dealing efficiently with such relationships. That is, a graph is a set of

objects, called “vertices,” together with a collection of pairwise connections be-

tween them, which define “edges.”

Because applications for graphs are so widespread and diverse, people have de-

veloped a great deal of terminology to describe different components and properties

of graphs, which we also explore in this chapter. Fortunately, since most graph ap-

plications are relatively recent developments, this terminology is fairly intuitive.

We begin this chapter by discussing much of this terminology and some el-

ementary properties of graphs. We also present ways of representing graphs. As

highlighted above, traversals are important computations for graphs, both for short-

est paths and for arbitrary paths, and we discuss in Section 13.2. We discuss di-

rected graphs in Section 13.4, where pairwise relationships have a given direction,

and connectivity problems become more complicated.
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13.1 Graph Terminology and Representations

A graph G is a set, V , of vertices and a collection, E, of pairs of vertices from

V , which are called edges. Thus, a graph is a way of representing connections or

relationships between pairs of objects from some set V . Incidentally, some people

use different terminology for graphs and refer to what we call vertices as “nodes”

and what we call edges as “arcs” or “ties.”

Edges in a graph are either directed or undirected. An edge (u, v) is said to

be directed from u to v if the pair (u, v) is ordered, with u preceding v. An edge

(u, v) is said to be undirected if the pair (u, v) is not ordered. Undirected edges

are sometimes denoted with set notation, as {u, v}, but for simplicity we use the

pair notation (u, v), noting that in the undirected case (u, v) is the same as (v, u).
Graphs are typically visualized by drawing the vertices as circles or rectangles and

the edges as segments or curves connecting pairs of these circles or rectangles.

Example 13.1: We can visualize collaborations among the researchers of a cer-

tain discipline by constructing a graph whose vertices are associated with the re-

searchers themselves, and whose edges connect pairs of vertices associated with

researchers who have coauthored a paper or book. (See Figure 13.1.) Such edges

are undirected because coauthorship is a symmetric relation; that is, if A has coau-

thored something with B, then B necessarily has coauthored something with A.
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Figure 13.1: Graph of coauthorships among some authors.
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13.1.1 Some Graph Terminology

If all the edges in a graph are undirected, then we say the graph is an undirected

graph. Likewise, a directed graph, also called a digraph, is a graph whose edges

are all directed. A graph that has both directed and undirected edges is often called

a mixed graph. Note that an undirected or mixed graph can be converted into a

directed graph by replacing every undirected edge (u, v) by the pair of directed

edges (u, v) and (v, u). It is often useful, however, to keep undirected and mixed

graphs represented as they are, for such graphs have several applications.

Example 13.2: We can associate with an object-oriented program a graph whose

vertices represent the classes defined in the program, and whose edges indicate

inheritance between classes. There is an edge from a vertex v to a vertex u if the

class for v extends the class for u. Such edges are directed because the inheritance

relation only goes in one direction (that is, it is asymmetric).

Example 13.3: A city map can be modeled by a graph whose vertices are inter-

sections or dead ends, and whose edges are stretches of streets without intersec-

tions. This graph has both undirected edges, which correspond to stretches of two-

way streets, and directed edges, which correspond to stretches of one-way streets.

Thus, a graph modeling a city map is a mixed graph.

Example 13.4: Physical examples of graphs are present in the electrical wiring

and plumbing networks of a building. Such networks can be modeled as graphs,

where each connector, fixture, or outlet is viewed as a vertex, and each uninter-

rupted stretch of wire or pipe is viewed as an edge. Such graphs are actually com-

ponents of much larger graphs, namely the local power and water distribution net-

works. Depending on the specific aspects of these graphs that we are interested in,

we may consider their edges as undirected or directed, for, in principle, water can

flow in a pipe and current can flow in a wire in either direction.

The two vertices joined by an edge are called the end vertices of the edge. The

end vertices of an edge are also known as the endpoints of that edge. If an edge is

directed, its first endpoint is its origin and the other is the destination of the edge.

Two vertices are said to be adjacent if they are endpoints of the same edge. An

edge is said to be incident on a vertex if the vertex is one of the edge’s endpoints.

The outgoing edges of a vertex are the directed edges whose origin is that vertex.

The incoming edges of a vertex are the directed edges whose destination is that

vertex. The degree of a vertex v, denoted deg(v), is the number of incident edges

of v. The in-degree and out-degree of a vertex v are the number of the incoming

and outgoing edges of v, and are denoted indeg(v) and outdeg(v), respectively.

Example 13.5: We can study air transportation by constructing a graph G, called

a flight network, whose vertices are associated with airports, and whose edges

are associated with flights. (See Figure 13.2.) In graph G, the edges are directed

because a given flight has a specific travel direction (from the origin airport to the
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destination airport). The endpoints of an edge e in G correspond respectively to the

origin and destination for the flight corresponding to e. Two airports are adjacent

in G if there is a flight that flies between them, and an edge e is incident upon a

vertex v in G if the flight for e flies to or from the airport for v. The outgoing edges

of a vertex v correspond to the out-bound flights from v’s airport, and the incoming

edges correspond to the in-bound flights to v’s airport. Finally, the in-degree of a

vertex v of G corresponds to the number of in-bound flights to v’s airport, and the

out-degree of a vertex v in G corresponds to the number of out-bound flights.
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Figure 13.2: Example of a directed graph representing a flight network. The end-

points of edge UA 120 are LAX and ORD; hence, LAX and ORD are adjacent.

The in-degree of DFW is 3, and the out-degree of DFW is 2.

The definition of a graph groups edges in a collection, not a set, thus allowing

for two undirected edges to have the same end vertices, and for two directed edges

to have the same origin and destination. Such edges are called parallel edges or

multiple edges. Parallel edges may exist in a flight network (Example 13.5), in

which case multiple edges between the same pair of vertices could indicate different

flights operating on the same route at different times of the day. Another special

type of edge is one that connects a vertex to itself. In this case, we say that an edge

(undirected or directed) is a self-loop if its two endpoints coincide. A self-loop

may occur in a graph associated with a city map (Example 13.3), where it would

correspond to a “circle” (a curving street that returns to its starting point).

With few exceptions, like those mentioned above, graphs do not have parallel

edges or self-loops. Such graphs are said to be simple. Thus, we can usually say

that the edges of a simple graph are a set of vertex pairs (and not just a collection).

Throughout this chapter, we shall assume that a graph is simple unless otherwise

specified. This assumption simplifies the presentation of data structures and al-

gorithms for graphs. Extending the results of this chapter to general graphs, with

self-loops and/or parallel edges, is straightforward but tedious.
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In the theorems that follow, we explore a few important properties of degrees

and the number of edges in a graph. These properties relate the number of vertices

and edges to each other and to the degrees of the vertices in a graph.

Theorem 13.6: If G is a graph with m edges, then
∑

v ∈ G

deg(v) = 2m.

Proof: An edge (u, v) is counted twice in the above summation: once by its

endpoint u and once by its endpoint v. Thus, the total contribution of the edges to

the degrees of the vertices is twice the number of edges.

Theorem 13.7: If G is a directed graph with m edges, then
∑

v ∈ G

indeg(v) =
∑

v ∈ G

outdeg(v) = m.

Proof: In a directed graph, an edge (u, v) contributes one unit to the out-degree

of its origin u and one unit to the in-degree of its destination v. Thus, the total

contribution of the edges to the out-degrees of the vertices is equal to the number

of edges, and similarly for the in-degrees.

Theorem 13.8: Let G be a simple graph with n vertices and m edges. If G is

undirected, then m ≤ n(n − 1)/2, and if G is directed, then m ≤ n(n − 1).

Proof: Suppose that G is undirected. Since no two edges can have the same

endpoints and there are no self-loops, the maximum degree of a vertex in G is

n − 1 in this case. Thus, by Theorem 13.6, 2m ≤ n(n − 1). Now suppose that G
is directed. Since no two edges can have the same origin and destination, and there

are no self-loops, the maximum in-degree of a vertex in G is n − 1 in this case.

Thus, by Theorem 13.7, m ≤ n(n − 1).

Put another way, Theorem 13.8 states that a simple graph with n vertices has

O(n2) edges.

A path in a graph is a sequence of alternating vertices and edges that starts at

a vertex and ends at a vertex, such that each edge is incident to its predecessor and

successor vertex. A cycle is a path with the same start and end vertices. We say

that a path is simple if each vertex in the path is distinct, and we say that a cycle

is simple if each vertex in the cycle is distinct, except for the first and last one. A

directed path is a path such that all the edges are directed and are traversed along

their direction. A directed cycle is defined similarly.

Example 13.9: Given a graph G representing a city map (see Example 13.3), we

can model a couple driving from their home to dinner at a recommended restaurant

as traversing a path though G. If they know the way, and don’t accidentally go
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through the same intersection twice, then they traverse a simple path in G. Like-

wise, we can model the entire trip the couple takes, from their home to the restau-

rant and back, as a cycle. If they go home from the restaurant in a completely

different way than how they went, not even going through the same intersection

twice, then their entire round trip is a simple cycle. Finally, if they travel along

one-way streets for their entire trip, then we can model their night out as a directed

cycle.

A subgraph of a graph G is a graph H whose vertices and edges are subsets of

the vertices and edges of G, respectively. A spanning subgraph of G is a subgraph

of G that contains all the vertices of the graph G. A graph is connected if, for

any two vertices, there is a path between them. If a graph G is not connected, its

maximal connected subgraphs are called the connected components of G. A forest

is a graph without cycles. A tree is a connected forest, that is, a connected graph

without cycles.

Note that this definition of a tree is somewhat different from the one given in

Section 2.3. Namely, in the context of graphs, a tree has no root. Whenever there is

ambiguity, the trees of Section 2.3 should be called rooted trees, while the trees of

this chapter should be called free trees. The connected components of a forest are

(free) trees. A spanning tree of a graph is a spanning subgraph that is a (free) tree.

Example 13.10: Perhaps the most talked about graph today is the Internet, which

can be viewed as a graph whose vertices are computers and whose (undirected)

edges are communication connections between pairs of computers on the Inter-

net. The computers and the connections between them in a single domain, like

wiley.com, form a subgraph of the Internet. If this subgraph is connected, then

two users on computers in this domain can send e-mail to one another without hav-

ing their information packets ever leave their domain. Suppose the edges of this

subgraph form a spanning tree. This implies that, even if a single connection goes

down (for example, because someone pulls a communication cable out of the back

of a computer in this domain), then this subgraph will no longer be connected.

There are a number of simple properties of trees, forests, and connected graphs.

Theorem 13.11: Let G be an undirected graph with n vertices and m edges.

Then we have the following:

• If G is connected, then m ≥ n − 1.

• If G is a tree, then m = n − 1.

• If G is a forest, then m ≤ n − 1.

We leave the justification of this theorem as an exercise (C-13.1).
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13.1.2 Operations on Graphs

In spite of their simplicity, graphs are a rich abstraction. This richness derives partly

from the fact that graphs contain two kinds of objects—vertices and edges—and

also because edges can be directed or undirected. There are, therefore, a number of

operations that we can consider performing for a graph, G, including the following:

• Return the number, n, of vertices in G.

• Return the number, m, of edges in G.

• Return a set or list containing all n vertices in G.

• Return a set or list containing all m edges in G.

• Return some vertex, v, in G.

• Return the degree, deg(v), of a given vertex, v, in G.

• Return a set or list containing all the edges incident upon a given vertex, v,

in G.

• Return a set or list containing all the vertices adjacent to a given vertex, v,

in G.

• Return the two end vertices of an edge, e, in G; if e is directed, indicate

which vertex is the origin of e and which is the destination of e.

• Return whether two given vertices, v and w, are adjacent in G.

When we allow for some or all the edges in a graph to be directed, then there

are several additional methods we should consider including in the set of operations

that could be supported by a graph, such as the following:

• Indicate whether a given edge, e, is directed in G.

• Return the in-degree of v, inDegree(v).

• Return a set or list containing all the incoming (or outgoing) edges incident

upon a given vertex, v, in G.

• Return a set or list containing all the vertices adjacent to a given vertex, v,

along incoming (or outgoing) edges in G.

We can also allow for update methods that add or delete edges and vertices,

such as the following:

• Insert a new directed (or undirected) edge, e, between two given vertices, v
and w, in G.

• Insert a new (isolated) vertex, v, in G.

• Remove a given edge, e, from G.

• Remove a given vertex, v, and all its incident edges from G.

In addition, we can allow any edge or vertex to store additional information,

including numeric weights, Boolean values, or even pointers to general objects.

There are admittedly a lot of operations than one can perform with a graph, and

the above list is not even exhaustive. The number of operations is to a certain extent

unavoidable, however, since graphs are such rich structures.
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13.1.3 Data Structures for Representing Graphs

There are two data structures that people often use to represent graphs, the adja-

cency list and the adjacency matrix. In both of these representations, if vertices or

edges are used to store data, then we assume there is some way of mapping vertices

and edges to data that is associated with them. For example, we may use a lookup

structure to store objects using vertex or edge names as keys, or we may represent

edges or vertices as multiple-field objects and store the data associated with the

edges or vertices in these fields. As we explain below, the main difference between

these two graph representations are that we may get different time performances

for various graph operations depending on how our graph is represented. Also,

for a graph G with n vertices and m edges, an adjacency list representation uses

O(n + m) space, whereas an adjacency matrix representation uses O(n2) space.

The Adjacency List Structure

The adjacency list structure for a graph, G, includes the following components:

• A collection, V , of n vertices. This collection could be a set, list, or array,

or it could even be defined implicitly as simply the integers from 1 to n. If

vertices can “store” data, there also needs to be some way to map each vertex,

v, to the data associated with v.

• A collection, E, of m edges, that is, pairs of vertices. This collection could

be a set, list, or array, or it could even be defined implicitly by the pairs of

vertices that are determined by adjacency lists. If edges can “store” data,

there also needs to be some way to map each edge, e, to the data associated

with e.

• For each vertex, v, in V , we store a list, called the adjacency list for v, that

represents all the edges incident on v. This is implemented either as a list

of references to each vertex, w, such that (v, w) is an edge in E, or it is

implemented as a list of references to each edge, e, that is incident on v. If

G is a directed graph, then the adjacency list for v is typically divided into

two parts—one representing the incoming edges for v and one representing

the outgoing edges for v.

We illustrate the adjacency list structure of a directed graph in Figure 13.3. For

a vertex v, the space used by the adjacency list for v is proportional to the degree

of v, that is, it is O(deg(v)). Thus, by Theorem 13.6, the space requirement of the

adjacency list structure for a graph, G, of n vertices and m edges is O(n + m).
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Figure 13.3: (a) A directed graph G; (b) a schematic representation of the adjacency

list structure of G. In this example, we have a set of vertex objects and set of edge

objects. Each edge object has pointers to its two end vertices and each vertex object

has pointers to the two parts of its adjacency list, which store references to incident

edges, one part for incoming edges and one for outgoing edges.

In addition, the adjacency list structure has the following performance proper-

ties:

• Returning the incident edges or adjacent vertices for a vertex, v, run in

O(deg(v)) time.

• Determining whether two vertices, u and v, are adjacent can be performed by

inspecting either the adjacency list for u or that of v. By choosing the smaller

of the two, we get O(min{deg(u), deg(v)}) running time for this operation.
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The Adjacency Matrix Structure

In the adjacency matrix representation of a graph, G, we represent the edges in G
using (a two-dimensional array) matrix, A. This representation allows us to deter-

mine adjacencies between pairs of vertices in constant time. As we shall see, the

trade-off in achieving this speedup is that the space usage for representing a graph

of n vertices is O(n2), even if the graph has few edges.

In the adjacency matrix representation, we number the vertices, 1, 2, . . . , n,

and we view the edges as being pairs of such integers. Historically, the adjacency

matrix was the first representation used for graphs, with the adjacency matrix being

a Boolean n × n matrix, A, defined as follows:

A[i, j] =

{

1 if (i, j) is an edge in G
0 otherwise.

Thus, the adjacency matrix has a natural appeal as a mathematical structure (for

example, an undirected graph has a symmetric adjacency matrix).

Modern instances of an adjacency matrix representation often update this his-

torical perspective slightly to follow an object-oriented framework. In this case, we

represent a graph, G, with an n × n array, A, such that A[i, j] stores a reference to

an edge object, e, if there is an edge e = (i, j) in G. If there is no edge, (i, j) in

G, then A[i, j] is null.

In addition, if vertices or edges have some kind of data that is associated with

them, then we would also need some way of mapping vertex numbers to vertex data

and vertex pairs, (i, j), to associated edge data.

Using an adjacency matrix A, we can determine whether two vertices, v and

w, are adjacent in O(1) time. We can achieve this performance by accessing the

vertices v and w to determine their respective indices i and j, and then testing

whether the cell A[i, j] is null or not. This performance achievement is traded off

by an increase in the space usage, however, which is now O(n2), and in the running

time of some other graph operations as well. For example, listing out the incident

edges or adjacent vertices for a vertex v now requires that we examine an entire

row or column of the array, A, representing the graph, which takes O(n) time.

Deciding which representation to use for a particular graph, G, typically boils

down to determining how dense G is. For instance, if G has close to a quadratic

number of edges, then the adjacency matrix is often a good choice for representing

G, but if G has close to a linear number of edges, then the adjacency list repre-

sentation is probably superior. The graph algorithms we examine in this chapter

tend to run most efficiently when acting upon a graph stored using an adjacency list

representation.

We illustrate an example adjacency matrix in Figure 13.4.
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Figure 13.4: Schematic representation of an adjacency matrix structure. (a) A di-

rected graph G; (b) a numbering of its vertices; (c) the adjacency matrix A for G,

using a modern object-oriented viewpoint, where each cell, A[i, j], holds a pointer

to the edge object, e = (i, j), or is null if there is no such edge in G.
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13.2 Depth-First Search

In this section, we explore a fundamental kind of algorithmic operation that we

might wish to perform on a graph—traversing the edges and the vertices of that

graph. Specifically, a traversal is a systematic procedure for exploring a graph by

examining all of its vertices and edges. For example, a web spider, or crawler,

which is the data collecting part of a search engine, must explore a graph of hyper-

text documents by examining its vertices, which are the documents, and its edges,

which are the hyperlinks between documents. A traversal is efficient if it visits all

the vertices and edges in time proportional to their number, that is, in linear time.

The first traversal algorithm we consider is depth-first search (DFS) in an undi-

rected graph. Depth-first search is useful for performing a number of computations

on graphs, including finding a path from one vertex to another, determining whether

a graph is connected, and computing a spanning tree of a connected graph.

Traversing a Graph Using the Backtracking Technique

Depth-first search in an undirected graph G applies the backtracking technique and

is analogous to wandering in a labyrinth with a string and a can of paint without

getting lost. We begin at a specific starting vertex s in G, which we initialize by

fixing one end of our string to s and painting s as “explored.” The vertex s is now

our “current” vertex—call our current vertex v. We then traverse G by considering

an (arbitrary) edge (v, w) incident to the current vertex, v. If the edge (v, w) leads

us to an already explored (that is, painted) vertex w, then we immediately backtrack

to vertex v. If, on the other hand, (v, w) leads to an unexplored vertex, w, then

we unroll our string, and go to w. We then paint w as “explored” and make it

the current vertex, repeating the above computation. Eventually, we will get to a

“dead end,” that is, a current vertex, v, such that all the edges incident on v lead to

vertices already explored. To get out of this impasse, we roll our string back up,

backtracking along the edge that brought us to v, going back to a previously visited

vertex, u. We then make u our current vertex and repeat the above computation for

any edges incident upon u that we have not looked at before. If all of u’s incident

edges lead to visited vertices, then we again roll up our string and backtrack to the

vertex we came from to get to u, and repeat the procedure at that vertex. Thus, we

continue to backtrack along the path that we have traced so far until we find a vertex

that has yet unexplored edges, at which point we take one such edge and continue

the traversal. The process terminates when our backtracking leads us back to the

start vertex, s, and there are no more unexplored edges incident on s. This simple

process traverses the edges of G in an elegant, systematic way. (See Figure 13.5.)
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Figure 13.5: Example of depth-first search traversal on a graph starting at vertex A.

Discovery edges are drawn with solid lines and back edges are drawn with dashed

lines. The current vertex is drawn with a thick line: (a) input graph; (b) path of

discovery edges traced from A until back edge (B,A) is hit; (c) reaching F, which

is a dead end; (d) after backtracking to C, resuming with edge (C,G), and hitting

another dead end, J; (e) after backtracking to G; (f) after backtracking to N.
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Visualizing Depth-First Search

We can visualize a DFS traversal by orienting the edges along the direction in which

they are explored during the traversal, distinguishing the edges used to discover

new vertices, called discovery edges, or tree edges, from those that lead to already

explored vertices, called back edges. (See Figure 13.5f.) In the analogy above,

discovery edges are the edges where we unroll our string when we traverse them,

and back edges are the edges where we immediately return without unrolling any

string. The discovery edges form a spanning tree of the connected component of

the starting vertex s, called DFS tree. We call the edges not in the DFS tree “back

edges,” because, assuming that the DFS tree is rooted at the start vertex, each such

edge leads back from a vertex in this tree to one of its ancestors in the tree.

Recursive Depth-First Search

The pseudocode for a DFS traversal starting at a vertex v follows our analogy with

string and paint based on the backtracking technique. We use recursion to imple-

ment this approach. We assume that we have a mechanism (similar to the painting

analogy) to determine if a vertex or edge has been explored or not, and to label the

edges as discovery edges or back edges.

A pseudocode description of recursive DFS is given in Algorithm 13.6.

Algorithm DFS(G, v):

Input: A graph G and a vertex v in G
Output: A labeling of the edges in the connected component of v as discovery

edges and back edges, and the vertices in the connected component of v as

explored

Label v as explored

for each edge, e, that is incident to v in G do

if e is unexplored then

Let w be the end vertex of e opposite from v
if w is unexplored then

Label e as a discovery edge

DFS(G, w)
else

Label e as a back edge

Algorithm 13.6: A recursive description of the DFS algorithm for searching from a

vertex, v.
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Properties of the Depth-First Search Algorithm

There are a number of observations that we can make about the depth-first search

algorithm, many of which derive from the way the DFS algorithm partitions the

edges of the undirected graph G into two groups, the discovery edges and the back

edges. For example, since back edges always connect a vertex v to a previously

visited vertex u, each back edge implies a cycle in G, consisting of the discovery

edges from u to v plus the back edge (v, u).

Theorem 13.12, which follows, identifies some other important properties of

the depth-first search traversal method.

Theorem 13.12: Let G be an undirected graph on which a DFS traversal starting

at a vertex s has been performed. Then the traversal visits all the vertices in the

connected component of s, and the discovery edges form a spanning tree of the

connected component of s.

Proof: Suppose, for the sake of a contradiction, there is at least one vertex v in

s’s connected component not visited. Let w be the first unvisited vertex on some

path from s to v (we may have v = w). Since w is the first unvisited vertex on

this path, it has a neighbor u that was visited. But when we visited u, we must

have considered the edge (u, w); hence, it cannot be correct that w is unvisited.

Therefore, there are no unvisited vertices in s’s connected component. Since we

only mark edges when we go to unvisited vertices, we will never form a cycle

with discovery edges, that is, the discovery edges form a tree. Moreover, this is

a spanning tree because the depth-first search visits each vertex in the connected

component of s.

The depth-first search algorithm for searching all the vertices in a graph, G, is

shown in Algorithm 13.7.

Algorithm DFS(G):

Input: A graph G
Output: A labeling of the vertices in each connected component of G as ex-

plored

Initially label each vertex in v as unexplored

for each vertex, v, in G do

if v is unexplored then

DFS(G, v)

Algorithm 13.7: The DFS algorithm for searching an entire graph, G. Each time we

make a call, DFS(G, v), to the recursive depth-first algorithm for searching from a

vertex, v, we traverse a different connected component of G.
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Analyzing Depth-First Search

In terms of its running time, depth-first search is an efficient method for traversing

a graph. Note that DFS is called exactly once on each vertex, and that every edge

is examined exactly twice, once from each of its end vertices. Let ms denote the

number of edges in the connected component of vertex s. A DFS starting at s runs

in O(ms) time provided the following conditions are satisfied:

• The graph is represented by a data structure that allows us to find all the

incident edges for a vertex, v, in O(degree(v)) time. Note that the adjacency

list structure satisfies this property, the adjacency matrix structure does not.

• We need to have a way to “mark” a vertex or edge as explored, and to test if a

vertex or edge has been explored in O(1) time. One way to do such marking

is to design vertex objects and edge objects so that they each contain a visited
flag. Another way is to use an auxiliary hash table to store the explored

vertices and edges, and have a Boolean explored value associated with the

vertex and edge keys in this hash table. Yet another way is to design vertex

and edge objects so that they each have a small hash table associated with

them that can be used to add “decorator” fields to these objects.

By Theorem 13.12, we can use DFS to solve a number of interesting problems

for an undirected graph, as shown in the following theorem.

Theorem 13.13: Let G be a graph with n vertices and m edges represented with

the adjacency list structure. A DFS traversal of G can be performed in O(n + m)
time. Also, there exist O(n + m)-time algorithms based on DFS for the following

problems:

• Testing whether G is connected

• Computing a spanning forest of G

• Computing the connected components of G

• Computing a path between two vertices of G, or reporting that no such path

exists

• Computing a cycle in G, or reporting that G has no cycles.

The justification of Theorem 13.13 is based on algorithms that use the depth-

first search algorithm or a slightly modified versions of the DFS algorithm. We

explore the details of the proof of this theorem in several exercises.



370 Chapter 13. Graphs and Traversals

13.3 Breadth-First Search

In this section, we consider the breadth-first search (BFS) traversal algorithm. Like

DFS, BFS traverses a connected component of a graph, and in so doing, defines

a useful spanning tree. Instead of searching recursively, however, BFS proceeds

in rounds and subdivides the vertices into levels, which represent the minimum

number of edges from the start vertex to each vertex.

BFS starts at a given start vertex, s, which is at level 0 and defines the “anchor”

for our string. In the first round, we explore all the vertices we can reach in one

edge, marking each as explored. These vertices are placed into level 1. In the

second round, we explore all the vertices that can be reached in two edges from

the start vertex. These new vertices, which are adjacent to level 1 vertices and not

previously assigned to a level, are placed into level 2, and so on. The BFS traversal

terminates when every vertex has been visited. Pseudo-code for a BFS traversal

starting at a vertex s is shown in Algorithm 13.8. We use auxiliary space to label

edges, mark visited vertices, and store lists associated with levels. That is, the lists

L0, L1, L2, and so on, store the nodes that are in level 0, level 1, level 2, and so on.

Algorithm BFS(G, s):

Input: A graph G and a vertex s of G
Output: A labeling of the edges in the connected component of s as discovery

edges and cross edges

Create an empty list, L0

Mark s as explored and insert s into L0

i ← 0
while Li is not empty do

create an empty list, Li+1

for each vertex, v, in Li do

for each edge, e = (v, w), incident on v in G do

if edge e is unexplored then

if vertex w is unexplored then

Label e as a discovery edge

Mark w as explored and insert w into Li+1

else

Label e as a cross edge

i ← i + 1

Algorithm 13.8: BFS traversal of a graph.

We illustrate a BFS traversal in Figure 13.9.
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Figure 13.9: Example of breadth-first search traversal. The discovery edges are

shown with solid lines and the cross edges are shown with dashed lines: (a) graph

before the traversal; (b) discovery of level 1; (c) discovery of level 2; (d) discovery

of level 3; (e) discovery of level 4; (f) discovery of level 5.
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One of the nice properties of the BFS approach is that, in performing the BFS

traversal, we can label each vertex by the length of a shortest path (in terms of the

number of edges) from the start vertex s. In particular, if vertex v is placed into

level i by a BFS starting at vertex s, then the length of a shortest path from s to v
is i.

As with DFS, we can visualize the BFS traversal by orienting the edges along

the direction in which they are explored during the traversal, and by distinguishing

the edges used to discover new vertices, called discovery edges, from those that

lead to already visited vertices, called cross edges. (See Figure 13.9f.) As with the

DFS, the discovery edges form a spanning tree, which in this case we call the BFS

tree. We do not call the nontree edges “back edges” in this case, however, for none

of them connects a vertex to one of its ancestors. Every nontree edge connects a

vertex v to another vertex that is neither v’s ancestor nor its descendant.

The BFS traversal algorithm has a number of interesting properties, some of

which we state in the theorem that follows.

Theorem 13.14: Let G be an undirected graph on which a BFS traversal starting

at vertex s has been performed. Then we have the following:

• The traversal visits all the vertices in the connected component of s.

• The discovery edges form a spanning tree T of the connected component

of s.

• For each vertex v at level i, the path of tree T between s and v has i edges,

and any other path of G between s and v has at least i edges.

• If (u, v) is a cross edge, then the level numbers of u and v differ by at most 1.

We leave the justification of this theorem as an exercise (C-13.17). The analysis

of the running time of BFS is similar to the one of DFS.

Theorem 13.15: Let G be a graph with n vertices and m edges represented with

the adjacency list structure. A BFS traversal of G takes O(n+m) time. Also, there

exist O(n + m)-time algorithms based on BFS for the following problems:

• Testing whether G is connected

• Computing a spanning forest of G

• Computing the connected components of G

• Given a start vertex s of G, computing, for every vertex v of G, a path with

the minimum number of edges between s and v, or reporting that no such

path exists

• Computing a cycle in G, or reporting that G has no cycles.
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13.4 Directed Graphs

In this section, we consider issues that are specific to directed graphs. Recall that a

directed graph, or digraph, is a graph that has only directed edges.

A fundamental issue with directed graphs is the notion of reachability, which

deals with determining where we can get to in a directed graph. For example, in a

graph whose vertices represent college courses and whose directed edges represent

prerequisites, it is important to know which courses depend on a given other course

as an explicit or implicit prerequisite. A traversal in a directed graph always goes

along directed paths, that is, paths where all the edges are traversed according to

their respective directions. Given vertices u and v of a digraph �G, we say that u
reaches v (and v is reachable from u) if �G has a directed path from u to v.

A digraph �G is strongly connected if, for any two vertices u and v of �G, u
reaches v and v reaches u. A directed cycle of �G is a cycle where all the edges are

traversed according to their respective directions. (Note that �G may have a cycle

consisting of two edges with opposite direction between the same pair of vertices.)

A digraph �G is acyclic if it has no directed cycles. (See Figure 13.10 for examples.)
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Figure 13.10: Examples of reachability in a digraph: (a) a directed path from BOS

to LAX is drawn with thick lines; (b) a directed cycle (ORD, MIA, DFW, LAX,

ORD) is drawn with thick lines; its vertices induce a strongly connected subgraph;

(c) the subgraph of the vertices and edges reachable from ORD is shown with thick

lines; (d) removing the dashed edges gives an acyclic digraph.
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The transitive closure of a digraph, �G, is the digraph �G∗ such that the vertices

of �G∗ are the same as the vertices of �G, and �G∗ has an edge (u, v), whenever �G has

a directed path from u to v. That is, we define �G∗ by starting with the digraph, �G,

and adding in an extra edge (u, v), for each u and v such that v is reachable from u

(and there isn’t already an edge (u, v) in �G).

Interesting problems that deal with reachability in a digraph, �G, include finding

all the vertices of �G that are reachable from a given vertex s, determining whether
�G is strongly connected, determining whether �G is acyclic, and computing the

transitive closure �G∗ of �G.

13.4.1 Traversing a Digraph

As with undirected graphs, we can explore a digraph in a systematic way with

slight modifications to the depth-first search (DFS) and breadth-first search (BFS)

algorithms defined previously for undirected graphs (Sections 13.2 and 13.3). Such

explorations can be used, for example, to answer reachability questions. The di-

rected depth-first search and breadth-first search methods we develop in this section

for performing such explorations are very similar to their undirected counterparts.

In fact, the main difference is that the directed depth-first search and breadth-first

search methods only traverse edges according to their respective directions. For

instance, see Algorithm 13.11 for a possible extension of DFS to directed graphs

(and see Exercise C-13.13 for another).

Algorithm DirectedDFS(G, v):

Label v as active // Every vertex is initially unexplored

for each outgoing edge, e, that is incident to v in G do

if e is unexplored then

Let w be the destination vertex for e
if w is unexplored and not active then

Label e as a discovery edge

DirectedDFS(G, w)
else if w is active then

Label e as a back edge

else

Label e as a forward/cross edge

Label v as explored

Algorithm 13.11: A recursive description of the DirectedDFS algorithm for search-

ing from a vertex, v.

We illustrate a directed version of DFS starting at a vertex, BOS, in Fig-

ure 13.12.
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Figure 13.12: An example of a DFS in a digraph: (a) intermediate step, where,

for the first time, an already visited vertex (DFW) is reached; (b) the completed

DFS. The order in which the vertices are visited is indicated by a label next to each

vertex. Discovery edges are shown with thick solid lines, back edges are shown

with thick dashed lines, and forward edges are shown with thin dashed lines. For

instance, (ORD,DFW) is a back edge and (DFW,ORD) is a forward edge. If there

were an edge (SFO,LAX), it would be a cross edge.

A directed DFS on a digraph, �G, partitions the edges of �G reachable from

the starting vertex into discovery edges or tree edges, which lead us to discover a

new vertex, and nontree edges, which take us to a previously visited vertex. The

discovery edges form a tree rooted at the starting vertex, called the directed DFS

tree. Also, we can distinguish three kinds of nontree edges (see Figure 13.12b):

• back edges, which connect a vertex to an ancestor in the DFS tree

• forward edges, which connect a vertex to a descendant in the DFS tree

• cross edges, which connect a vertex to a vertex that is neither its ancestor nor

its descendant.

Theorem 13.16: Let �G be a digraph. Depth-first search on �G, starting at a vertex

s, visits all the vertices of �G that are reachable from s. Also, the DFS tree contains

directed paths from s to every vertex reachable from s.

Proof: Let Vs be the subset of vertices of �G visited by DFS starting at vertex

s. We want to show that Vs contains s and every vertex reachable from s belongs

to Vs. Suppose, for the sake of a contradiction, that there is a vertex w reachable

from s that is not in Vs. Consider a directed path from s to w, and let (u, v) be the

first edge on such a path taking us out of Vs, that is, u is in Vs but v is not in Vs.

When DFS reaches u, it explores all the outgoing edges of u, and thus must also

reach vertex v via edge (u, v). Hence, v should be in Vs, and we have obtained a

contradiction. Therefore, Vs must contain every vertex reachable from s.
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Analyzing the running time of the directed DFS method is analogous to that

for its undirected counterpart. A recursive call is made for each vertex exactly

once, and each edge is traversed exactly once (along its direction). Hence, if the

subgraph reachable from a vertex s has ms edges, a directed DFS starting at s runs

in O(ns + ms) time, provided the digraph is represented with an adjacency list.

By Theorem 13.16, we can use DFS to find all the vertices reachable from a

given vertex, and hence to find the transitive closure of �G. That is, we can perform

a DFS, starting from each vertex v of �G, to see which vertices w are reachable

from v, adding an edge (v, w) to the transitive closure for each such w. Likewise,

by repeatedly traversing digraph �G with a DFS, starting in turn at each vertex, we

can easily test whether �G is strongly connected. Therefore, �G is strongly connected

if each DFS visits all the vertices of �G.

Theorem 13.17: Let �G be a digraph with n vertices and m edges. The following

problems can be solved by an algorithm that runs in O(n(n + m)) time:

• Computing, for each vertex v of �G, the subgraph reachable from v
• Testing whether �G is strongly connected

• Computing the transitive closure �G∗ of �G.

Testing for Strong Connectivity

Actually, we can determine if a directed graph �G is strongly connected much faster

than O(n(n + m)) time, just using two depth-first searches. We begin by perform-

ing a DFS of our directed graph �G starting at an arbitrary vertex s. If there is any

vertex of �G that is not visited by this DFS, and is not reachable from s, then the

graph is not strongly connected. So, if this first DFS visits each vertex of �G, then

we reverse all the edges of �G (using the reverseDirection method) and perform

another DFS starting at s in this “reverse” graph. If every vertex of �G is visited

by this second DFS, then the graph is strongly connected, for each of the vertices

visited in this DFS can reach s. Since this algorithm makes just two DFS traversals

of �G, it runs in O(n + m) time.

Directed Breadth-First Search

As with DFS, we can extend breadth-first search (BFS) to work for directed graphs.

A pseudocode description is essentially the same as that shown in Algorithm 13.8.

The algorithm still visits vertices level by level and partitions the set of edges into

tree edges (or discovery edges), which together form a directed breadth-first search

tree rooted at the start vertex, and nontree edges. Unlike the directed DFS method,

however, the directed BFS method only leaves two kinds of nontree edges:

• back edges, which connect a vertex to one of its ancestors

• cross edges, which connect a vertex to another vertex that is neither its an-

cestor nor its descendant.
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Modifying BFS for Directed Graphs

Thus, the only change needed in order to modify the pseudocode description of

BFS shown in Algorithm 13.8 to work for directed graphs is to label each nontree

edge as a back/cross edge. We explore how to distinguish between back and cross

nontree edges with respect to a directed BFS tree in Exercise C-13.11. There are

no forward edges, which is a fact we explore in an exercise (C-13.12).

13.4.2 Transitive Closure

In this section, we explore an alternative technique for computing the transitive clo-

sure of a digraph. That is, we describe a direct method for determining all pairs of

vertices (v, w) in a directed graph such that w is reachable from v. Such informa-

tion is useful, for example, in computer networks, for it allows us to immediately

know if we can route a message from a node v to a node w, or whether it is appro-

priate to say “you can’t get there from here” with respect to this message.

The Floyd-Warshall Algorithm

Let �G be a digraph with n vertices and m edges. We compute the transitive closure

of �G in a series of rounds. We initialize �G0 = �G. We also arbitrarily number the

vertices of �G as

v1, v2, . . . , vn.

We then begin the computation of the rounds, beginning with round 1. In a generic

round k, we construct digraph �Gk starting with �Gk = �Gk−1 and adding to �Gk the

directed edge (vi, vj) if digraph �Gk−1 contains both the edges (vi, vk) and (vk, vj).
In this way, we will enforce a simple rule embodied in the lemma that follows.

Lemma 13.18: For i = 1, . . . , n, digraph �Gk has an edge (vi, vj) if and only if

digraph �G has a directed path from vi to vj , whose intermediate vertices (if any)

are in the set {v1, . . . , vk}. In particular, �Gn is equal to �G∗, the transitive closure

of �G.

This lemma suggests a simple dynamic programming algorithm (Chapter 12)

for computing the transitive closure of �G, which is known as the Floyd-Warshall

algorithm. Pseudo-code for this method is given in Algorithm 13.13.
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Algorithm FloydWarshall( �G):

Input: A digraph �G with n vertices

Output: The transitive closure �G∗ of �G

Let v1, v2, . . . , vn be an arbitrary numbering of the vertices of �G
�G0 ← �G
for k ← 1 to n do

�Gk ← �Gk−1

for i ← 1 to n, i 	= k do

for j ← 1 to n, j 	= i, k do

if both edges (vi, vk) and (vk, vj) are in �Gk−1 then

if �Gk does not contain directed edge (vi, vj) then

add directed edge (vi, vj) to �Gk

return �Gn

Algorithm 13.13: The Floyd-Warshall algorithm. This dynamic programming algo-

rithm computes the transitive closure �G∗ of G by incrementally computing a series

of digraphs �G0, �G1, . . . , �Gn, for k = 1, . . . , n.

Analysis of the Floyd-Warshall Algorithm

The running time of the Floyd-Warshall algorithm is easy to analyze. The main

loop is executed n times and the inner loop considers each of O(n2) pairs of

vertices, performing a constant-time computation for each pair. If we use a data

structure, such as the adjacency matrix structure, that supports methods areAdja-
cent and insertDirectedEdge in O(1) time, we have that the total running time

is O(n3). Thus, we have the following.

Theorem 13.19: Let �G be a digraph with n vertices represented by the adjacency

matrix structure. The Floyd-Warshall algorithm computes the transitive closure �G∗

of �G in O(n3) time.

Let us now compare the running time of the Floyd-Warshall algorithm with that

of the more complicated algorithm of Theorem 13.17, which repeatedly performs a

DFS n times, starting at each vertex. If the digraph is represented by an adjacency

matrix structure, then a DFS traversal takes O(n2) time (we explore the reason for

this in an exercise). Thus, running DFS n times takes O(n3) time, which is no

better than a single execution of the Floyd-Warshall algorithm.

If the digraph is represented by an adjacency list structure, then running the

DFS algorithm n times would take O(n(n + m)) time. Even so, if the graph is

dense, that is, if it has Θ(n2) edges, then this approach still runs in O(n3) time.

Thus, the only case where the algorithm of Theorem 13.17 is better than the

Floyd-Warshall algorithm is when the graph is not dense and is represented using

an adjacency list structure.

We illustrate an example run of the Floyd-Warshall algorithm in Figure 13.14.
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Figure 13.14: Sequence of digraphs computed by the Floyd-Warshall algorithm: (a)

initial digraph �G = �G0 and numbering of the vertices; (b) digraph �G1; (c) �G2; (d)
�G3; (e) �G4; (f) �G5. Note that �G5 = �G6 = �G7. If digraph �Gk−1 has the edges

(vi, vk) and (vk, vj), but not the edge (vi, vj), in the drawing of digraph �Gk, we

show edges (vi, vk) and (vk, vj) with dashed thin lines, and edge (vi, vj) with a

solid thick line.
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13.4.3 Directed DFS and Garbage Collection

In some languages, like C and C++, the memory space for objects must be explicitly

allocated and deallocated by the programmer. This memory-allocation duty is often

overlooked by beginning programmers, and, when done incorrectly, it can even be

the source of frustrating programming errors for experienced programmers. Thus,

the designers of other languages, like Java, place the burden of memory manage-

ment on the runtime environment. A Java programmer does not have to explicitly

deallocate the memory for some object when its life is over. Instead, a garbage

collector mechanism deallocates the memory for such objects.

In Java, memory for most objects is allocated from a pool of memory called

the “memory heap” (not to be confused with the heap data structure). In addition,

a running program stores the space for its instance variables in its method stack

(Section 2.1.1). Since instance variables in a method stack can refer to objects in the

memory heap, all the variables and objects in a method stack is called a root object.

All those objects that can be reached by following object references that start from

a root object are called live objects. The live objects are the active objects currently

being used by the running program; these objects should not be deallocated. For

example, a running Java program may store, in a variable, a reference to a sequence

S that is implemented using a doubly linked list. The reference variable to S is a

root object, while the object for S is a live object, as are all the node objects that

are referenced from this object and all the elements that are referenced from these

node objects.

From time to time, the Java virtual machine (JVM) may notice that available

space in the memory heap is becoming scarce. At such times, the JVM can elect to

reclaim the space that is being used for objects that are no longer live. This reclama-

tion process is known as garbage collection. There are several different algorithms

for garbage collection, but one of the most used is the mark-sweep algorithm.

The Mark-Sweep Algorithm

In the mark-sweep garbage collection algorithm, we associate a “mark” bit with

each object that identifies if that object is live or not. When we determine at some

point that garbage collection is needed, we suspend all other running threads and

clear all of the mark bits of objects currently allocated in the memory heap. We then

trace through the Java stacks of the currently running threads and we mark all of the

(root) objects in these stacks as “live.” We must then determine all of the other live

objects—the ones that are reachable from the root objects. To do this efficiently,

we should use the directed-graph version of the depth-first search traversal. In this

case, each object in the memory heap is viewed as a vertex in a directed graph,

and the reference from one object to another is viewed as an edge. By performing

a directed DFS from each root object, we can correctly identify and mark each

live object. This process is known as the “mark” phase. Once this process has
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completed, we then scan through the memory heap and reclaim any space that is

being used for an object that has not been marked. This scanning process is known

as the “sweep” phase, and when it completes, we resume running the suspended

threads. Thus, the mark-sweep garbage collection algorithm will reclaim unused

space in time proportional to the number of live objects and their references plus

the size of the memory heap.

Performing DFS In-place

The mark-sweep algorithm correctly reclaims unused space in the memory heap,

but there is an important issue we must face during the mark phase. Since we are

reclaiming memory space at a time when available memory is scarce, we must take

care not to use extra space during the garbage collection itself. The trouble is that

the DFS algorithm, in the recursive way we have described it, can use space pro-

portional to the number of vertices in the graph. In the case of garbage collection,

the vertices in our graph are the objects in the memory heap; hence, we don’t have

this much memory to use. So our only alternative is to find a way to perform DFS

in-place rather than recursively, that is, we must perform DFS using only a constant

amount of additional storage.

The main idea for performing DFS in-place is to simulate the recursion stack

using the edges of the graph (which in the case of garbage collection correspond to

object references). Whenever we traverse an edge from a visited vertex v to a new

vertex w, we change the edge (v, w) stored in v’s adjacency list to point back to v’s

parent in the DFS tree. When we return back to v (simulating the return from the

“recursive” call at w), we can now switch the edge we modified to point back to w.

Of course, we need to have some way of identifying which edge we need to change

back. One possibility is to number the references going out of v as 1, 2, and so on,

and store, in addition to the mark bit (which we are using for the “visited” tag in

our DFS), a count identifier that tells us which edges we have modified.

Using a count identifier of course requires an extra word of storage per object.

This extra word can be avoided in some implementations, however. For example,

many implementations of the Java virtual machine represent an object as a com-

position of a reference with a type identifier (which indicates if this object is an

Integer or some other type) and as a reference to the other objects or data fields for

this object. Since the type reference is always supposed to be the first element of

the composition in such implementations, we can use this reference to “mark” the

edge we changed when leaving an object v and going to some object w. We simply

swap the reference at v that refers to the type of v with the reference at v that refers

to w. When we return to v, we can quickly identify the edge (v, w) we changed,

because it will be the first reference in the composition for v, and the position of the

reference to v’s type will tell us the place where this edge belongs in v’s adjacency

list. Thus, whether we use this edge-swapping trick or a count identifier, we can

implement DFS in-place without affecting its asymptotic running time.
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13.4.4 Directed Acyclic Graphs

A directed graph without cycles is referred to as a directed acyclic graph, or dag,

for short. Applications of such graphs include the following:

• Inheritance between C++ classes or Java interfaces

• Prerequisites between courses of a degree program

• Scheduling constraints between the tasks of a project.

Example 13.20: In order to manage a large project, it is convenient to break it up

into a collection of smaller tasks. The tasks, however, are rarely independent, be-

cause scheduling constraints exist between them. (For example, in a house building

project, the task of ordering nails obviously precedes the task of nailing shingles to

the roof deck.) Clearly, scheduling constraints cannot have circularities, because a

circularity would make the project impossible. (For example, in order to get a job

you need to have work experience, but in order to get work experience you need to

have a job.) The scheduling constraints impose restrictions on the order in which

the tasks can be executed. Namely, if a constraint says that task a must be com-

pleted before task b is started, then a must precede b in the order of execution of

the tasks. Thus, if we model a feasible set of tasks as vertices of a directed graph,

and we place a directed edge from v to w whenever the task for v must be executed

before the task for w, then we define a directed acyclic graph.

The above example motivates the following definition. Let �G be a digraph with

n vertices. A topological ordering of �G is an ordering (v1, v2, . . . , vn) of the ver-

tices of �G such that for every edge (vi, vj) of �G, i < j. That is, a topological

ordering is an ordering such that any directed path in �G traverses vertices in in-

creasing order. (See Figure 13.15.) Note that a digraph may have more than one

topological ordering.
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Figure 13.15: Two topological orderings of the same acyclic digraph.
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Theorem 13.21: A digraph has a topological ordering if and only if it is acyclic.

Proof: The necessity (the “only if” part of the statement) is easy to demonstrate.

Suppose �G is topologically ordered. Assume, for the sake of a contradiction, that
�G has a cycle consisting of edges (vi0 , vi1), (vi1 , vi2), . . . , (vik−1

, vi0). Because of

the topological ordering, we must have i0 < i1 < · · · < ik−1 < i0, which is clearly

impossible. Thus, �G must be acyclic.

We now argue sufficiency (the “if” part). Suppose �G is acyclic. We describe an

algorithm to build a topological ordering for �G. Since �G is acyclic, �G must have a

vertex with no incoming edges (that is, with in-degree 0). Let v1 be such a vertex.

Indeed, if v1 did not exist, then in tracing a directed path from an arbitrary start ver-

tex we would eventually encounter a previously visited vertex, thus contradicting

the acyclicity of �G. If we remove v1 from �G, together with its outgoing edges, the

resulting digraph is still acyclic. Hence, the resulting digraph also has a vertex with

no incoming edges, and we let v2 be such a vertex. By repeating this process until
�G becomes empty, we obtain an ordering v1, . . . ,vn of the vertices of �G. Because

of the above construction, if (vi, vj) is an edge of �G, then vi must be deleted before

vj can be deleted, and thus i < j. Thus, v1, . . . , vn is a topological ordering.

The above proof suggests Algorithm 13.16, called topological sorting.

Algorithm TopologicalSort( �G):

Input: A digraph �G with n vertices.

Output: A topological ordering v1, . . . ,vn of �G or �G has a cycle.

Let S be an initially empty stack

for each vertex u of �G do

incounter(u) ← indeg(u)
if incounter(u) = 0 then

S.push(u)
i ← 1
while S is not empty do

u ← S.pop()
number u as the i-th vertex vi

i ← i + 1
for each edge e ∈ �G.outIncidentEdges(u) do

w ← �G.opposite(u, e)
incounter(w) ← incounter(w) − 1
if incounter(w) = 0 then

S.push(w)
if i > n then

return v1, · · · , vn

return “digraph �G has a directed cycle”

Algorithm 13.16: Topological sorting algorithm.
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Theorem 13.22: Let �G be a digraph with n vertices and m edges. The topo-

logical sorting algorithm runs in O(n + m) time using O(n) auxiliary space, and

either computes a topological ordering of �G or fails to number some vertices, which

indicates that �G has a directed cycle.

Proof: The initial computation of in-degrees and setup of the incounter variables

can be done with a simple traversal of the graph, which takes O(n + m) time. We

use an extra field in graph nodes or we use the decorator pattern, described in the

next section, to associate counter attributes with the vertices. Say that a vertex u is

visited by the topological sorting algorithm when u is removed from the stack S.

A vertex u can be visited only when incounter(u) = 0, which implies that all its

predecessors (vertices with outgoing edges into u) were previously visited. As a

consequence, any vertex that is on a directed cycle will never be visited, and any

other vertex will be visited exactly once. The algorithm traverses all the outgoing

edges of each visited vertex once, so its running time is proportional to the number

of outgoing edges of the visited vertices. Therefore, the algorithm runs in O(n +
m) time. Regarding the space usage, observe that the stack S and the incounter

variables attached to the vertices use O(n) space.

As a side effect, the algorithm also tests whether the input digraph �G is acyclic.

Indeed, if the algorithm terminates without ordering all the vertices, then the sub-

graph of the vertices that have not been ordered must contain a directed cycle. (See

Figure 13.17.)

(a) (b)

Figure 13.17: Detecting a directed cycle: (a) input digraph; (b) after algorithm

TopologicalSort (Algorithm 13.16) terminates, the subgraph of the vertices with

undefined number contains a directed cycle.

We visualize the topological sorting algorithm in Figure 13.18.
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Figure 13.18: Example of a run of algorithm TopologicalSort (Algorithm 13.16):

(a) initial configuration; (b–i) after each while-loop iteration. The vertex labels

give the vertex number and the current incounter value. The edges traversed in

previous iterations are drawn with thick solid lines. The edges traversed in the

current iteration are drawn with thick dashed lines.
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13.5 Biconnected Components

Let G be a connected undirected graph. A separation edge of G is an edge whose

removal disconnects G. A separation vertex is a vertex whose removal discon-

nects G. Separation edges and vertices correspond to single points of failure in a

network; hence, we often wish to identify them. A connected graph G is bicon-

nected if, for any two vertices u and v of G, there are two disjoint paths between

u and v, that is, two paths sharing no common edges or vertices, except u and v.

A biconnected component of G is a subgraph satisfying one of the following (see

Figure 13.19):

• A subgraph of G that is biconnected and for which adding any additional

vertices or edges of G would force it to stop being biconnected

• A single edge of G consisting of a separation edge and its endpoints.

If G is biconnected, it has one biconnected component: G itself. If G has no cycles,

on the other hand, then each edge of G is a biconnected component. Biconnected

components are important in computer networks, where vertices represent routers

and edges represent connections, for even if a router in a biconnected component

fails, messages can still be routed in that component using the remaining routers.

As stated in the following lemma, whose proof is left as an exercise (C-13.5),

biconnectivity is equivalent to the absence of separation vertices and edges.

Lemma 13.23: Let G be a connected graph. The following are equivalent:

1. G is biconnected.

2. For any two vertices of G, there is a simple cycle containing them.

3. G does not have separation vertices or separation edges.
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F I
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Figure 13.19: Biconnected components, shown circled with dashed lines. C, F ,

and K are separation vertices; (C, F ) and (K, L) are separation edges.
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Equivalence Classes and the Linked Relation

Any time we have a collection C of objects, we can define a Boolean relation,

R(x, y), for each pair x and y in C. That is, R(x, y) is defined for each x and y in

C as being either true or false. The relation R is an equivalence relation if it has

the following properties:

• Reflexive Property: R(x, x) is true for each x in C.

• Symmetric Property: R(x, y) = R(y, x), for each pair x and y in C.

• Transitive Property: If R(x, y) is true and R(y, z) is true, then R(x, z) is

true, for every x, y, and z in C.

For example, the usual “equals” operator (=) is an equivalence relation for any set

of numbers. The equivalence class for any object x in C is the set of all objects y,

such that R(x, y) is true. Note that any equivalence relation R for a set C partitions

the set C into disjoint subsets that consist of the equivalence classes of the objects

in C.

We can define an interesting link relation on the edges of a graph G. We say

two edges e and f of G are linked if e = f or G has a simple cycle containing both

e and f . The following lemma gives fundamental properties of the link relation.

Lemma 13.24: Let G be a connected graph. Then,

1. The link relation forms an equivalence relation on the edges of G.

2. A biconnected component of G is the subgraph induced by an equivalence

class of linked edges.

3. An edge e of G is a separation edge if and only if e forms a single-element

equivalence class of linked edges.

4. A vertex v of G is a separation vertex if and only if v has incident edges in

at least two distinct equivalence classes of linked edges.

Proof: It is readily seen that the link relation is reflexive and symmetric. To

show that it is transitive, suppose that edges f and g are linked, and edges g and h
are linked. If f = g or g = h, then f = h or there is a simple cycle containing

f and h; hence, f and h are linked. Suppose, then, that f , g, and h are distinct.

That is, there is a simple cycle Cfg through f and g, and there is a simple cycle

Cgh through g and h. Consider the graph obtained by the union of cycles Cfg and

Cgh. While this graph may not be a simple cycle itself (although we could have

Cfg = Cgh), it contains a simple cycle Cfh through f and h. Thus, f and h are

linked. Therefore, the link relation is an equivalence relation.

The correspondence between equivalence classes of the link relation and bicon-

nected components of G is a consequence of Lemma 13.23.
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A Linked Approach to Computing Biconnected Components via DFS

Since the equivalence classes of the link relation on the edges of G are the same

as the biconnected components, by Lemma 13.24, to construct the biconnected

components of G we need only compute the equivalence classes of the link relation

among G’s edges. To perform this computation, let us begin with a DFS traversal

of G, and construct an auxiliary graph B as follows (see Figure 13.20):

• The vertices of B are the edges of G.

• For every back edge e of G, let f1, . . . , fk be the discovery edges of G that

form a cycle with e. Graph B contains the edges (e, f1), . . . , (e, fk).

Since there are m − n + 1 back edges and each cycle induced by a back edge has

at most O(n) edges, the graph B has at most O(nm) edges.
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Figure 13.20: Auxiliary graph used to compute link components: (a) graph G on

which a DFS traversal has been performed (the back edges are drawn with dashed

lines); (b) auxiliary graph associated with G and its DFS traversal.
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An O(nm)-Time Algorithm

From Figure 13.20, it appears that each connected component in B corresponds to

an equivalence class in the link relation for the graph G. After all, we included an

edge (e, f) in B for each back edge e found on the cycle containing f that was

induced by e and the DFS spanning tree.

The following lemma, whose proof is left as an exercise (C-13.7), establishes

a strong relationship between the graph B and the equivalence classes in the link

relation on G’s components of G, where, for brevity, we call the equivalence classes

in the link relation the link components of G.

Lemma 13.25: The connected components of the auxiliary graph B correspond

to the link components of the graph G that induced B.

Lemma 13.25 yields the following O(nm)-time algorithm for computing all

the link components of a graph G with n vertices and m edges:

1. Perform a DFS traversal T on G.

2. Compute the auxiliary graph B by identifying the cycles of G induced by

each back edge with respect to T .

3. Compute the connected components of B, for example, by performing a DFS

traversal of the auxiliary graph B.

4. For each connected component of B, output the vertices of B (which are

edges of G) as a link component of G.

From the identification of the link components in G, we can then determine the

biconnected components, separation vertices, and separation edges of the graph G
in linear time. Namely, after the edges of G have been partitioned into equivalence

classes with respect to the link relation, the biconnected components, separation

vertices, and separation edges of G can be identified in O(n + m) time, using

the simple rules listed in Lemma 13.24. Unfortunately, constructing the auxiliary

graph B can take as much as O(nm) time; hence, the bottleneck computation in

this algorithm is the construction of B.

But note that we don’t actually need all of the auxiliary graph B in order to find

the biconnected components of G. We only need to identify the connected compo-

nents in B. Thus, it would actually be sufficient if we were to simply compute a

spanning tree for each connected component in B, that is, a spanning forest for B.

Since the connected components in a spanning forest for B are the same as in the

graph B itself, we don’t actually need all the edges of B—just enough of them to

construct a spanning forest of B.

Therefore, let us concentrate on how we can apply this more efficient spanning-

forest approach to compute the equivalence classes of the edges of G with respect

to the link relation.
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A Linear-Time Algorithm

As outlined above, we can reduce the time required to compute the link components

of G to O(m) time by using an auxiliary graph of smaller size, which is a spanning

forest of B. The algorithm is described in Algorithm 13.21.

Algorithm LinkComponents(G):

Input: A connected graph G
Output: The link components of G

Let F be an initially empty auxiliary graph.

Perform a DFS traversal of G starting at an arbitrary vertex s.

Add each DFS discovery edge f as a vertex in F and mark f “unlinked.”

For each vertex v of G, let p(v) be the parent of v in the DFS spanning tree.

for each vertex v, in increasing rank order as visited in the DFS traversal do

for each back edge e = (u, v) with destination v do

Add e as a vertex of the graph F .

// March up from u to s adding edges to F only as necessary.

while u 	= v do

Let f be the vertex in F corresponding to the discovery edge

(u, p(u)).
Add the edge (e, f) to F .

if f is marked “unlinked” then

Mark f as “linked.”

u ← p(u)
else

u ← v // shortcut to the end of the while loop

Compute the connected components of the graph F .

Algorithm 13.21: A linear-time algorithm for computing the link components. Note

that a connected component in F consisting of an individual “unlinked” vertex

corresponds to a separation edge (related only to itself in the link relation).

Let us analyze the running time of LinkComponents, from Algorithm 13.21.

The initial DFS traversal of G takes O(m) time. The main computation, however,

is the construction of the auxiliary graph F , which takes time proportional to the

number of vertices and edges of F . Note that at some point in the execution of

the algorithm, each edge of G is added as a vertex of F . We use an accounting

charge method to account for the edges of F . Namely, each time we add to F an

edge (e, f), from a newly encountered back edge e to a discover edge f , let us

charge this operation to f if f is marked “unlinked” and to e otherwise. From the

construction of the inner while-loop, we see that we charge each vertex of F at most

once during the algorithm using this scheme. We conclude that the construction of

F takes O(m) time. Finally, the computation of the connected components of F ,

which correspond to the link components of G, takes O(m) time.
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The correctness of the above algorithm follows from the fact that the graph F in

LinkComponents is a spanning forest of the graph B mentioned in Lemma 13.25.

For details, see Exercise C-13.8. Therefore, we summarize with the following the-

orem and give an example of LinkComponents in Figure 13.22.

Theorem 13.26: Given a connected graph G with m edges, we can compute G’s

biconnected components, separation vertices, and separation edges in O(m) time.
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Figure 13.22: Sample execution of algorithm LinkComponents (Algorithm 13.21):

(a) input graph G after a DFS traversal (the vertices are labeled by their rank in the

visit order, and the back edges are drawn with dashed lines); auxiliary graph F after

processing (b) back edge (K, A), (c) back edge (M, A), and (d) back edge (M.B);
(e) graph F at the end of the algorithm.
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13.6 Exercises

Reinforcement

R-13.1 Draw a simple undirected graph G that has 12 vertices, 18 edges, and 3 con-

nected components. Why would it be impossible to draw G with 3 connected

components if G had 66 edges?

R-13.2 Let G be a simple connected graph with n vertices and m edges. Explain why

O(log m) is O(log n).

R-13.3 Draw a simple connected directed graph with 8 vertices and 16 edges, such that

the in-degree and out-degree of each vertex is 2. Show that there is a single

cycle (which may not necessarily be simple) that includes all the edges of your

graph, that is, you can trace all the edges in their respective directions without

ever lifting your pencil. (Such a cycle is called an Euler tour.)

R-13.4 Bob loves foreign languages and wants to plan his course schedule to take the

following nine language courses: LA15, LA16, LA22, LA31, LA32, LA126,

LA127, LA141, and LA169. The course prerequisites are:

• LA15: (none)

• LA16: LA15

• LA22: (none)

• LA31: LA15

• LA32: LA16, LA31

• LA126: LA22, LA32

• LA127: LA16

• LA141: LA22, LA16

• LA169: LA32.

Find a sequence of courses that allows Bob to satisfy all the prerequisites.

R-13.5 Suppose we represent a graph G having n vertices with an adjacency matrix.

Why, in this case, would inserting an undirected edge in G run in O(1) time

while inserting a new vertex would take O(n2) time?

R-13.6 Let G be a graph whose vertices are the integers 1 through 8, and let the adjacent

vertices of each vertex be given by the table below:

vertex adjacent vertices

1 (2, 3, 4)

2 (1, 3, 4)

3 (1, 2, 4)

4 (1, 2, 3, 6)

5 (6, 7, 8)

6 (4, 5, 7)

7 (5, 6, 8)

8 (5, 7)

Assume that, in a traversal of G, the adjacent vertices of a given vertex are re-

turned in the same order as they are listed in the above table.

a. Draw G.

b. Order the vertices as they are visited in a DFS traversal starting at vertex 1.

c. Order the vertices as they are visited in a BFS traversal starting at vertex 1.
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R-13.7 Would you use the adjacency list structure or the adjacency matrix structure in

each of the following cases? Justify your choice.

a. The graph has 10,000 vertices and 20,000 edges, and it is important to use

as little space as possible.

b. The graph has 10,000 vertices and 20,000,000 edges, and it is important to

use as little space as possible.

c. You need to answer the query areAdjacent as fast as possible, no matter

how much space you use.

R-13.8 Explain why the DFS traversal runs in Θ(n2) time on an n-vertex simple graph

that is represented with the adjacency matrix structure.

R-13.9 Draw the transitive closure of the directed graph shown in Figure 13.2.

R-13.10 Compute a topological ordering for the vertices in the directed graph drawn with

solid edges in Figure 13.10d.

R-13.11 Can we use a queue instead of a stack as an auxiliary data structure in the topo-

logical sorting algorithm shown in Algorithm 13.16?

R-13.12 Give the order in which the edges are labeled by the DFS traversal shown in

Figure 13.5.

R-13.13 Give the order in which the edges are labeled by the BFS traversal shown in

Figure 13.9.

R-13.14 Give the order in which the edges are labeled by the DFS traversal shown in

Figure 13.12.

R-13.15 How many biconnected components would be in the graph shown in Figure 13.5a

if we were to remove the edge (B,C) and the edge (N,K)?

Creativity

C-13.1 Justify Theorem 13.11.

C-13.2 Describe the details of an O(n + m)-time algorithm for computing all the con-

nected components of an undirected graph G with n vertices and m edges.

C-13.3 Let T be the spanning tree rooted at the start vertex produced by the depth-first

search of a connected, undirected graph, G. Argue why every edge of G, not in

T , goes from a vertex in T to one of its ancestors, that is, it is a back edge.

Hint: Suppose that such a nontree edge is a cross edge, and argue based upon the

order the DFS visits the end vertices of this edge how this leads to a contradiction.

C-13.4 Suppose G is a graph with n vertices and m edges. Describe a way to represent

G using O(n + m) space so as to support in O(log n) time an operation that can

test, for any two vertices v and w, whether v and w are adjacent.

C-13.5 Give a proof of Lemma 13.23.

C-13.6 Show that if a graph G has at least three vertices, then it has a separation edge

only if it has a separation vertex.
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C-13.7 Give a proof of Lemma 13.25.

C-13.8 Supply the details of the proof of correctness of the LinkComponents algorithm

(Algorithm 13.21).

C-13.9 Show how to perform a BFS traversal using, as an auxiliary data structure, a

single queue instead of the level containers L0, L1, . . . .

C-13.10 Show that, if T is a BFS tree produced for a connected graph G, then, for each

vertex v at level i, the path of T between s and v has i edges, and any other path

of G between s and v has at least i edges.

C-13.11 The directed version of the BFS algorithm classifies nontree edges as being either

back edges or cross edges, but it does not distinguish between these two types.

Given a BFS spanning tree, T , for a directed graph, �G, and a set of nontree edges,

E′, describe an algorithm that can correctly label each edge in E′ as being either

a back edge or cross edge. Your algorithm should run in O(n + m) time, where

n is the number of vertices and m is the number of edges.

Hint: Consider first constructing an Euler tour traversal of the tree T .

C-13.12 Explain why there are no forward nontree edges with respect to a BFS tree con-

structed for a directed graph.

C-13.13 In the pseudocode description of the directed DFS traversal algorithm we did

not distinguish the labeling of cross edges and forward edges. Describe how to

modify the directed DFS algorithm so that it correctly labels each nontree edge

as a back edge, forward edge, or cross edge.

C-13.14 Explain why the strong connectivity testing algorithm given in Section 13.4.1 is

correct.

C-13.15 Let G be an undirected graph with n vertices and m edges. Describe an O(n +
m)-time algorithm to determine whether G contains at least two cycles.

C-13.16 Let G be an undirected graph with n vertices and m edges. Describe an algorithm

running in O(n + m) time that can determine whether G contains exactly two

cycles that have no edges in common.

C-13.17 Justify Theorem 13.14.

C-13.18 Show that it is possible to count the total number of paths in a directed acyclic

graph, �G, with n vertices and m edges using O(n + m) additions. Also, show

that there is a graph, �G, where this number is at least 2n/2.

Applications

A-13.1 A road network is a mixed graph defined by the roads in a geographic region.

Vertices in this graph are defined by road intersections and dead ends, and edges

are defined by the portions of roads that connect such vertices. An edge is di-

rected if its associated road is a one-way street; otherwise, an edge is undirected.

Imagine that you are the manager of a post office delivery system, and that you

need to map out the route that a postal worker should drive to deliver mail to all

the houses on the roads in a given geographic region. Furthermore, suppose that
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all the streets in this region are one-way, so the road network for this region is a

directed graph, �G. An Euler tour of such a directed graph, �G, is a cycle that tra-

verses each edge of �G exactly once according to its direction. Note that an Euler

tour is necessarily the shortest route that starts at the post office (assuming it is

one of the vertices in �G) and visits every street in the road network represented

by �G in the appropriate direction (where u-turns are allowed at a vertex with an

outgoing edge going back to the origin of an incoming edge). Such a tour always

exists if �G is connected and the in-degree equals the out-degree of each vertex

in �G. Describe an O(n + m)-time algorithm for finding an Euler tour of such

a digraph, �G, if such a tour exists, starting from some vertex, v, where n is the

number of vertices in �G and m is the number of edges in �G.

A-13.2 Suppose you are given a connected road network, G, as described in the previous

exercise, except that none of the edges in G are directed. Describe an efficient

method for designing a tour of G that starts at some vertex, v, and traverses each

edge of G exactly once in each direction (with u-turns allowed). What is the

running time of your algorithm?

A-13.3 Suppose you work for a company that is giving a smartphone to each of its em-

ployees. Unfortunately, the companies that make apps for these smartphones are

constantly suing each other over their respective intellectual property. Say that

two apps, A and B, are litigation-conflicting if A contains some disputed tech-

nology that is also contained in B. Your job is to pre-install a set of apps on the

company smartphones, but you have been asked by the company lawyers to avoid

installing any litigation-conflicting apps. To make your job a little easier, these

lawyers have given you a graph, G, whose vertices consist of all the possible apps

you might want to install and whose edges consist of all the pairs of litigation-

conflicting apps. An independent set of such an undirected graph, G = (V,E), is

a subset, I , of V , such that no two vertices in I are adjacent. That is, if u, v ∈ I ,

then (u, v) 	∈ E. A maximal independent set M is an independent set such that,

if we were to add any additional vertex to M , then it would not be independent

any longer. In the case of the graph, G, of litigation-conflicting apps, a maximal

independent set in G corresponds to a set of nonconflicting apps such that if we

were to add any other app to this set, it would conflict with at least one of the

apps in the set. Give an efficient algorithm that computes a maximal independent

set for a such a graph, G. What is the running time of your algorithm?

A-13.4 Tamarindo University and many other schools worldwide are doing a joint project

on multimedia. A computer network is built to connect these schools using com-

munication links that form a free tree. The schools decide to install a file server

at one of the schools to share data among all the schools. Since the transmission

time on a link is dominated by the link setup and synchronization, the cost of a

data transfer is proportional to the number of links used. Hence, it is desirable to

choose a “central” location for the file server. Given a free tree T and a node v of

T , the eccentricity of v is the length of a longest path from v to any other node

of T . A node of T with minimum eccentricity is called a center of T .

a. Design an efficient algorithm that, given an n-node free tree T , computes

a center of T .

b. Is the center unique? If not, how many distinct centers can a free tree have?
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A-13.5 The time delay of a long-distance call can be determined by multiplying a small

fixed constant by the number of communication links on the telephone network

between the caller and callee. Suppose the telephone network of a company

named RT&T is a free tree. The engineers of RT&T want to compute the maxi-

mum possible time delay that may be experienced in a long-distance call. Given

a free tree T , the diameter of T is the length of a longest path between two nodes

of T . Give an efficient algorithm for computing the diameter of T .

A-13.6 A company named RT&T has a network of n stations connected by m high-speed

communication links. Each customer’s phone is connected to one station in his

or her area. The engineers of RT&T have developed a prototype video-phone

system that allows two customers to see each other during a phone call. In order

to have acceptable image quality, however, the number of links used to transmit

video signals between the two parties cannot exceed 4. Suppose that RT&T’s

network is represented by a graph. Design an efficient algorithm that computes,

for each station, the set of stations it can reach using no more than 4 links.

A-13.7 Imagine that you are a medical practitioner for a developing country, Strategia,

and it is your job to inoculate people in each village in Strategia so as to limit the

ability of the Kissoba virus to spread in Strategia. The Kissoba virus can only be

spread between two people if they kiss. For each village, you are given a kissing

graph, G, whose vertices are the people in that village and whose edges are pairs

of people who regularly kiss. Unfortunately, you don’t have an unlimited supply

of the Kissoba vaccine, and each shot is expensive. So the president of Strategia

has asked that you limit the people you vaccinate to those who are central kissers,

where a central kisser is a person, p, such that there are no two people, r and q,

who are kissed by p such that there is a sequence of kissing pairs of people that

starts with r and leads to q while avoiding p. Given a graph, G, representing

the kissing graph for a village in Strategia, describe an efficient algorithm for

identifying all the central kissers in G, and analyze its running time.

Chapter Notes

DFS is a part of the “folklore” of computer science, but Hopcroft and Tarjan [102, 205]

showed how useful this algorithm is for solving several different graph problems.

Knuth [129] discusses the topological sorting problem. The simple linear-time algorithm in

Section 13.4.1 for determining if a directed graph is strongly connected is due to Kosaraju.

The Floyd-Warshall algorithm appears in a paper by Floyd [72] and is based upon a the-

orem of Warshall [214]. The mark-sweep garbage collection method we describe is one

of many different algorithms for performing garbage collection. We encourage the reader

interested in further study of garbage collection to examine the book by Jones [114]. To

learn about algorithms for drawing graphs, see the book by Di Battista et al. [55] and

the handbook edited by Tamassia [203]. The reader interested in further study of graph

algorithms is referred to the books by Ahuja, Magnanti, and Orlin [10], Cormen, Leiser-

son, and Rivest [50], Even [68], Gibbons [81], Mehlhorn [158], and Tarjan [207], and the

book chapter by van Leeuwen [210]. For more applications of graph algorithms to social

networks, see the book by Easley and Kleinberg [60].


